More items are visible when logged in!

Excitations

  • Charge-Transfer in Time-Dependent Density Functional Theory

    Speaker: Professor Neepa T. Maitra
    Institute: Rutgers University at Newark
    Country: USA
    Speaker Link: https://sasn.rutgers.edu/about-us/faculty-staff/neepa-maitra

    Neepa T. Maitra

    Professor of Physics
    Rutgers University at Newark, Newark, NJ 07102, USA


    Video Recording

    Abstract

    Time-dependent density functional theory (TDDFT) has achieved an unprecedented balance between accuracy and efficiency in predicting electronic spectra of a wide range of systems in materials science and quantum chemistry. Recent years have seen increasing use for applications beyond linear response, for example, systems driven by laser fields, or prepared in initial states that are not ground-states. At the same time, it has become clear that some phenomena are particularly badly captured by the traditional approximations in TDDFT, and one of these is charge-transfer. This is a bit unfortunate since the transfer of electronic charge is such an important process throughout science. I review what is needed for functional approximations to accurately describe charge transfer. There has been intense progress in the development of functionals that can yield good charge-transfer excitations in many cases, and I will review this. Charge-transfer dynamics, which is a highly non-perturbative process, is an even more challenging problem for TDDFT than just getting the excitation energies correct, requiring density-dependence that is non-local in time, and I review why this is the case. Features of the exact exchange-correlation functional that are essential for this process will be described.