More items are visible when logged in!

DFT functionals accuracy

  • Accuracy of DFT self-consistent electron densities

    Speaker: Dr Michael G. Medvedev
    Institute: Nesmeyanov Institute of Organoelement Compounds
    Country: Russian Federation
    Speaker Link: https://scholar.google.ru/citations?hl=ru&user=21gC8T0AAAAJ&view_op=list_works&sortby=pubdate

    Michael G. Medvedev

    A.N. Nesmeyanov Institute of Organoelement Compounds RAS, 119991 Moscow, Russian Federation

    N.D. Zelinsky Institute of Organic Chemistry RAS, 119991 Moscow, Russian Federation


    Video Recording

    Video is available only for registered users.

    Abstract

    The theorems at the core of density functional theory (DFT) state that the energy of a many-electron system in its ground state is fully defined by its electron density distribution. This connection is made via the exact functional for the energy, which minimizes at the exact density (1). For years, DFT development focused on energies, implicitly assuming that functionals producing better energies become better approximations of the exact functional.
    We have examined the other side of the coin — the energy-minimizing electron densities for atomic species, as produced by more than a hundred DFT functionals (2). Self-consistent electron densities produced by these functionals were compared to the CCSD-full ones by means of three local descriptors: electron density (RHO), its gradient norm (GRD) and its Laplacian (LR); aug-cc-pωCV5Z basis set was used for all calculations.
    We have found that, reflecting theoretical advances, DFT functionals’ densities became closer to the CCSD-full ones, until in the early 2000s this trend was reversed by flexible functionals with forms chosen to be suitable for empirical fitting.
    During the year 2017 this result was extensively discussed in scientific literature and significantly broadened (3–11).

  • Quantum-chemical calculation of spectroscopic parameters

    Speaker: Professor Cristina Puzzarini
    Institute: University of Bologna
    Country: Italy
    Speaker Link: https://site.unibo.it/rotational-computational-spectroscopy/en

    Cristina Puzzarini

    Department of Chemistry “Giacomo Ciamician”, University of Bologna
    https://site.unibo.it/rotational-computational-spectroscopy


    Video Recording

    Video is available only for registered users.

    Abstract

    Implementation of very accurate ab initio methods on one hand and improvements in computer facilities on the other hand allow the determination of structural, molecular, and spectroscopic properties of small- to medium-size molecules to a very high accuracy. The predictive capabilities have such an accuracy that theoretical calculations can guide, support and even challenge experimental determinations. To perform accurate quantum-chemical calculations of spectroscopic parameters, post-HF methods, such as the coupled cluster ones, should be employed in conjunction with extrapolative and additive techniques in order to account for basis set and wave function truncation errors as well as to include important corrections, such as those related to core correlation and vibrational effects.
    Concerning rotational spectra, the starting point is the computation of an accurate equilibrium geometry for the evaluation of the corresponding rotational constants.  Next, quadratic and cubic force constants allow the determination of vibrational corrections to rotational constants together with the quartic and sextic centrifugal-distortion constants. Finally, accurate dipole moment components and, when needed, quadrupole-coupling constants complete the list of the needed quantities. The most effective strategy relies on coupled-cluster (CC) evaluations (at the CC singles and doubles augmented by a perturbative treatment of triple excitations, CCSD(T)) of equilibrium geometries, properties, and, possibly, quadratic force constants in a normal-mode representation (i.e., harmonic frequencies), also considering extrapolation to the complete basis set (CBS) limit and core− valence correlation (CV) contributions. These results can be complemented by density functional theory (DFT) evaluations of the anharmonic contributions (employing hybrid or double hybrid functionals, like B3LYP and B2PLYP, in conjunction with medium-sized basis sets). For larger molecules, benchmark studies suggest that the computationally expensive (and slowly converging) evaluation of harmonic frequencies at the CCSD(T)/CBS level augmented by CV corrections can be replaced by effective B2PLYP computations without any dramatic reduction of the accuracy for both rotational and vibrational spectroscopy investigations.
    Concerning vibrational spectroscopy, the simulation of fully anharmonic spectra including fundamental, overtones, and combination bands  requires, in addition to the quantities discussed above for the rotational spectra, quartic (at least semi-diagonal) force constants together with second and third derivatives of the electric dipoles (for IR spectra). Once again, hybrid and double hybrid functionals perform very well in the computation of anharmonic contributions, provided that, for the evaluation of the electric dipoles, diff use functions are properly included in the basis set. Subsequently, the vibrational problem can be solved by either variational or perturbative approaches. For semi-rigid molecules, second-order vibrational perturbation theory (VPT2) is particularly effective, provided that nearly resonant contributions are treated by means of a variational approach, thus leading to the so-called generalized VPT2 model (GVPT2).