Skip to main content

VWSCC logo Virtual Winter School on Computational Chemistry

CET

Cecam Logo

Computational Exploration of the Void Space in Solid-State Materials for Chemical Applications

06-10 February 2023

Stellenbosch University
South Africa
13:45 CET 07-Feb-23

Please log in to be able to watch

M.Sc. Shane De Beer

Stellenbosch University, South Africa

Porous solid materials, such as zeolites and metal-organic frameworks (MOFs), can have guest molecules occupying spaces in the material that can be evacuated to yield empty voids1. These voids can then be filled with different guest molecules; for some materials, only specific guests can occupy these voids. Several materials have been studied for gas storage and separation. Two such MOF materials are MIL-53(Al)2 and MOF-5083, which can both take up a number of guests with different selectivity and capacity. We computationally modelled the uptake of industrially important gases, like CO2, CH4 and C2H2, by the MOF materials. These materials can be functionalised to refine their sorption behaviours or add catalytic properties. We investigated the electronic structures of the functionalised materials to aid in the rational design of materials that can convert the guest molecules into useful products under photochemical conditions.


References

[1] - Li, H., Eddaoudi, M., O’Keeffe, M.O., Yaghi, O.M. Nature, 1999, 402, 276-279.

[2] - Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., Férey, G., Chem. Eur. J., 2004, 10, 1373-1382.

[3] - Chen, B., Liang, B., Yang, J., Contreras, D., Clancy, Y., Lobkovsky, E., Yaghi, O., Dai, S., Angew. Chem. Int. Ed., 2006, 45, 1390-1393.

Recording:

No comments

Financial Support

The Cooper Union for the Advancement of Science and Art is pleased to provide support for the 2024 VWSCC through a generous donation from Alan Fortier.

We thank Leibniz Institute for Catalysis (LIKAT) and CECAM for their support.