Skip to main content

VWSCC logo Virtual Winter School on Computational Chemistry

CET

Cecam Logo

Guiding Peptide-driven Exfoliation and Organization of 2D Nanomaterials

21-25 February 2022

Deakin University
Australia
09:00 CET 23-Feb-22

Please log in to be able to watch

Professor Tiffany Walsh

Institute for Frontier Materials, Deakin University, Australia

Peptides provide a versatile platform for the generation and organization of nanomaterials in liquid water. However, their application and use on two dimensional (2D) nanosheet structures such as graphene, h-BN and MoS2 is hampered, due to a lack of fundamental data regarding the structure/function relationships of these bio-nano interfaces. Together with experimental characterization, molecular simulations can provide complementary insights into these challenging interfaces. Here, our strategy uses bioconjugate hybrids of peptides and fatty acids to exfoliate materials into 2D nanosheets in aqueous media. The role of molecular simulations in revealing the molecular scale characteristics of the peptide-driven exfoliation process are discussed for graphene, particularly in the role of the fatty acids in reducing defects in the exfoliated material. Umbrella sampling simulations are also used to provide unprecedented insights into both the peptide-driven exfoliation and suspension mechanisms. Key to our progress here are advancements in our simulation strategy to model peptide/h-BN and peptide/MoS2 interfaces. This involved development of interfacial force-fields for describing bio-interactions at h-BN and MoS2 nanosheet interfaces in aqueous media, based on first-principles calculations. Replica-exchange with solute tempering (REST) molecular dynamics (MD) simulations are used to explore the contact between the peptides and the nanosheets, to guide the design of effective bioconjugates for exfoliation and assembly. The outcomes of our simulations provide a strong foundation for future work to design and deploy these molecular bioconjugates in the self-assembly of 2D heterostructures.

References:

  1. D. Parab, A. Budi, J. M. Slocik, R. Rao, R. R. Naik, T. R. Walsh,  M. R. Knecht, J. Phys. Chem. C, 124, 2219-2228 (2020).

  2. Brljak, A. D. Parab, R. Rao, J. M. Slocik, R. R. Naik, M. R. Knecht, T. R. Walsh, Chem. Commun.,56, 8834-8837, (2020).

  3. D. Parab, A. Budi, N. Brljak, M. R. Knecht, and T. R. Walsh, Adv. Mater. Interfaces, 8, 2001659 (2021).

  4. D. Parab, R. Dureja, R. Rao, J. M. Slocik, R. R. Naik, T. R. Walsh and M. R. Knecht, Langmuir, 37, 1152-1163 (2021).

  5. N. Pham and T. R. Walsh, Chem. Commun., 57, 3355-3358 (2021).

  6. Brljak, R. T. Jin,  T. R. Walsh, and M. R. Knecht, Nanoscale, 13, 5670-5678 (2021).

  7. T. Jin, F. Vuković and T. R. Walsh, J. Phys. Chem. Lett., in press

No comments

Financial Support

The Cooper Union for the Advancement of Science and Art is pleased to provide support for the 2024 VWSCC through a generous donation from Alan Fortier.

We thank Leibniz Institute for Catalysis (LIKAT) and CECAM for their support.