Skip to main content

VWSCC logo Virtual Winter School on Computational Chemistry

CET

Cecam Logo

Prediction in organometallic catalysis – a challenge for computational chemistry

15-19 February 2021

University of Bristol
UK

Please log in to be able to watch

Dr Natalie Fey

School of Chemistry, University of Bristol, Cantock’s Close, Bristol, BS8 1TS

Computational studies of homogeneous catalysis play an increasingly important role in furthering (and changing) our understanding of catalytic cycles and can help to guide the discovery and evaluation of new catalysts [1, 2]. While a truly “rational design” process remains out of reach, detailed mechanistic information from both experiment and computation can be combined successfully with suitable parameters characterising catalysts [3] and substrates to predict outcomes and guide screening [4].

The computational inputs to this process rely on large databases of parameters characterising ligand and complex properties in a range of different environments [5-9]. Such maps of catalyst space can be combined with experimental or calculated response data [7, 9], as well as large-scale data analysis. Rather than pursuing a purely computational solution of in silico catalyst design and evaluation, an iterative process of mechanistic study, data analysis, prediction and experimentation can accommodate complicated mechanistic manifolds and lead to useful predictions for the discovery and design of suitable catalysts. 

In this session, I will use examples drawn from our recent work, including the early stages of our development of a reactivity database, to illustrate this approach and discuss why organometallic catalysis is such a challenging yet rewarding area for prediction. 

Website: https://feygroupchem.wordpress.com/

References

1. C. L. McMullin, N. Fey, J. N. Harvey, Dalton Trans., 43 (2014), 13545-13556
2. N. Fey, M. Garland, J. P. Hopewell, C. L. McMullin, S. Mastroianni, A. G. Orpen, P. G. Pringle, Angew. Chem. Int. Ed., 51 (2012), 118-122.
3. D. J. Durand, N. Fey, Chem. Rev., 119 (2019), 6561-6594.
4. J. Jover, N. Fey, Chem. Asian J., 9 (2014), 1714-1723.
5. A. Lai, J. Clifton, P. L. Diaconescu, N. Fey, Chem. Commun., 55 (2019), 7021-7024.
6. O. J. S. Pickup, I. Khazal, E. J. Smith, A. C. Whitwood, J. M. Lynam, K. Bolaky, T. C. King, B. W. Rawe, N. Fey, Organometallics, 33 (2014), 1751-1791.
7. J. Jover, N. Fey, J. N. Harvey, G. C. Lloyd-Jones, A. G. Orpen, G. J. J. Owen-Smith, P. Murray, D. R. J. Hose, R. Osborne, M. Purdie, Organometallics, 29 (2010), 6245-6258.
8. J. Jover, N. Fey, J. N. Harvey, G. C. Lloyd-Jones, A. G. Orpen, G. J. J. Owen-Smith, P. Murray, D. R. J. Hose, R. Osborne, M. Purdie, Organometallics, 31 (2012), 5302-5306.
9. A. I. Green, C. P. Tinworth, S. Warriner, A. Nelson, N. Fey, Chem. Eur. J. 2020, Accepted Article, DOI: 10.1002/chem.202003801.

No comments

Financial Support

The 2025 edition of the Virtual Winter School on Computational Chemistry is proudly sponsored by the School of Chemistry at the University of Edinburgh.


The Cooper Union for the Advancement of Science and Art is pleased to provide support for the 2024 VWSCC through a generous donation from Alan Fortier.

We thank Leibniz Institute for Catalysis (LIKAT) and CECAM for their support.