Skip to main content

VWSCC logo Virtual Winter School on Computational Chemistry

CET

Cecam Logo

4 comments

Density-Functional Tight-Binding for the Predictive Simulation of Complex Systems

15-19 February 2021

Oak Ridge National Laboratory
USA

Please log in to be able to watch

Dr Stephan Irle

Computational Chemistry and Nanomaterials Sciences Group, Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6129, U.S.A.

The density-functional tight-binding (DFTB) method [1] is an approximation to density functional theory (DFT) allowing a speedup of first principles electronic structure calculations by two to three orders of magnitude.  This is achieved by solving the Kohn-Sham equations for valence electrons using a parameterized two-center Hamiltonian in a minimum pseudoatomic orbital basis set.  Since electronic structure is explicitly computed for each atomic configuration, DFTB is capable of simulating chemical processes including the breaking of covalent bonds, changes in aromatic electronic structure, charge transfer, charge polarization, etc. [2].  DFTB methods can therefore be employed in atomistic molecular dynamics (MD) simulations of processes that involve complex chemical processes, electron transfer, and/or mass and ion transport.  Its applicability is limited in part due to the unfavorable cubic scaling of computer time with system size, and in part due to the necessity of parameterization for element pairs.  Linear-scaling algorithms for massively parallel computation [3,4] and semiautomatic parameterization codes [5] have been developed to address these shortcomings.  Recently, systematic bias corrections were proposed based on a D-machine learning approach employing neural network potentials [6].

In this talk, I will first briefly review the DFTB method and its various “flavors” for including Coulombic interactions, before highlighting challenges associated with the parameterization of the Hamiltonian.  DFTB-based simulations of nanoscale materials self-assembly will illustrate the predictive power of the method to unravel complex chemical processes occurring in nonequilibrium on large length scales [6].

Recording:

Video is available only for registered users.

pdfPresentation slides

References

[1] a) Christensen, A. S.; Kubar, T.; Cui, Q.; Elstner, M. Semiempirical Quantum Mechanical Methods for Noncovalent Interactions for Chemical and Biochemical Applications, Chem. Rev. 2016, 116, 5301-5337; b) http://www.dftbplus.org

[2] Cui, Q.; Elstner, M. Density functional tight binding: values of semi-empirical methods in an ab initio era, Phys. Chem. Chem. Phys. 2014, 16, 14368-14377.

[3] Nishizawa, H.; Nishimura, Y.; Kobayashi, M.; Irle, S.; Nakai, H. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation, J. Comp. Chem. 2016, 37, 1983-1992.

[4] a) Nishimoto, Y.; Fedorov, D. G.; Irle, S. Density-Functional Tight-Binding Combined with the Fragment Molecular Orbital Method, J. Chem. Theory Comput. 2014, 10, 4801-4812; b) Vuong, V. Q.; Nishimoto, Y.; Fedorov, D. G.; Sumpter, B. G.; Niehaus, T. A.; Irle, S. The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding, J. Chem. Theory Comput. 2019, 15, 3008-3020. 

[5] Chou, C.-P.; Nishimura, Y.; Fan, C.-C.; Mazur, G.; Irle, S.; Witek, H. A. Automatized Parameterization of DFTB using Particle Swarm Optimization, J. Chem. Theory Comput. 2016, 12, 53-64.

[6] Zhu, J.; Vuong, V. Q.; Sumpter, B. G.; Irle, S. Artificial Neural Network Correction for Density-Functional Tight-Binding Molecular Dynamics Simulations, MRS Commun. 2019, 9, 867-873 (2019).

[7] Irle, S; Page, A. J.; Saha, B.; Wang, Y.; Chandrakumar, K. R. S.; Nishimoto, Y.; Qian, H.-J.; Morokuma, K. Atomistic mechanism of carbon nanostructure self-assembly as predicted by nonequilibrium QM/MD simulations, in: J. Leszczynski, M. K. Shukla, Eds. “Practical Aspects of Computational Chemistry II: An Overview of the Last Two Decades and Current Trends”, Springer-European Academy of Sciences, Chapter 5, pp. 105-172 (April 2, 2012).  ISBN 978-94-007-0922-5. DOI: 10.1007/978-94-007-0923-2_5 Preprint: https://www.dropbox.com/s/n2o3sjnb0t1z6mr/5_Online%20PDF.pdf?dl=0

Financial Support

The 2025 edition of the Virtual Winter School on Computational Chemistry is proudly sponsored by the School of Chemistry at the University of Edinburgh.


The Cooper Union for the Advancement of Science and Art is pleased to provide support for the 2024 VWSCC through a generous donation from Alan Fortier.

We thank Leibniz Institute for Catalysis (LIKAT) and CECAM for their support.