Skip to main content

VWSCC logo Virtual Winter School on Computational Chemistry

CET

Cecam Logo

Chemistry in a strong magnetic field

17-20 February 2020

University of Oslo
Norway

Please log in to be able to watch

Trygve Helgaker

Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, Box 1033 Blindern, N-0315 Oslo, Norway


Video Recording

Abstract

In a strong magnetic field, chemistry changes: electronic states change their character, atoms and molecules change their shape, and their interactions with radiation are affected, often in a dramatic manner [1–8]. Perhaps most surprisingly, new bonding mechanisms occur, giving rise to molecules that do not exist on Earth but may exist elsewhere such as in the atmospheres of magnetic white dwarfs [4,5]. The exotic chemistry of atoms and molecules in strong magnetic fields provides a fresh perspective on the familiar chemistry on Earth; at the same time, it provides a stress test for quantum chemistry, whose methods have been developed for Earth-like conditions. Density-functional theory, for example, must be re-examined and adapted for the molecules in strong magnetic fields and such modifications have relevance also for the calculation of magnetic properties such as shielding constants and magnetizabilities [7].
In the talk, I give an overview of chemistry in strong magnetic fields and discuss the how the methods of quantum chemistry such as coupled-cluster theory [6] and density-functional theory [7] must be modified and adapted to study molecules and their electronic structure in magnetic fields.

helgaker image

 

Reference

[1] D. Lai, Rev. Mod. Phys. 73, 629 (2001)
[2] P. Schmelcher and W. Schweizer, eds. “Atoms and Molecules in Strong External Fields”, (Kluwer, 2002)
[2] E. I. Tellgren, A. Soncini and T. Helgaker, J. Chem. Phys. 129, 154114 (2008)
[3] E. I Tellgren, T. Helgaker and A. Soncini, Phys. Chem. Chem. Phys. 11, 5489–5498 (2009)
[4] K. K. Lange, E. I. Tellgren, M. R. Hoffmann and T. Helgaker, Science 337, 327–331 (2012)
[5] E. I. Tellgren, S. Reine, and T. Helgaker, Phys. Chem. Chem. Phys. 14, 9492 (2012)
[6] S. Stopkowicz, J. Gauss, K. K. Lange, E. I. Tellgren and T. Helgaker, J. Chem. Phys. 143, 074110 (2015)
[7] S. Reimann, A. Borgoo, J. Austad, E. I. Tellgren, A. M. Teale, T. Helgaker and S. Stopkowicz, Mol. Phys. 117, 97( 2019)
[8] C. Holzer, A. M. Teale, F. Hampe, S. Stopkowicz, T. Helgaker and W. Klopper, J. Chem. Phys. 150, 214112 (2019)

No comments

Financial Support

The Cooper Union for the Advancement of Science and Art is pleased to provide support for the 2024 VWSCC through a generous donation from Alan Fortier.

We thank Leibniz Institute for Catalysis (LIKAT) and CECAM for their support.