Speaker: Professor Martin Head-Gordon
Institute: UC Berkley
Country: USA
Speaker Link: https://mhggroupberkeley.com/

Professor Martin Head-Gordon

University of California, Berkeley

Energy decomposition analysis (EDA) aims to quantitatively bridge the gap between quantum chemistry calculations and chemical intuition by providing values for the chemical drivers of intermolecular interactions, such as permanent electro- statics, Pauli repulsion, dispersion, and charge transfer. The goal is similar for chemical bonding, where one must also carefully account for bond formation via spin-coupling. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. The second generation version of the absolutely localized molecular orbital EDA (ALMO- EDA-II) will be described. The effect of different physical contributions on changes in observables such as structure, vibrational frequencies etc, upon complex formation is achieved via the adiabatic EDA. A variety of chemical examples will be presented to illustrate the usefulness of this approach, including bonding and frequency shifts of CO, N2, and BF bound to a [Ru(II)(NH3)5]2+ moiety, and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. The origin of the chemical bond will also be discussed, as will a few of the other controversies concerning the character of chemical interactions.

Recording:

Video is available only for registered users.

No thoughts on “Understanding intermolecular interactions and chemical bonding via energy decomposition analysis”